International Journal of Science and Engineering
8:10:45
 
 
More....

International Journal of Science and EngineeringJan-June 2023 Vol:2 Issue:1

A Critical Review of Innovation Diffusion of a Product and its Growth Models

Abstract

Over the past few years, the way new products and services are communicated has become more complex. Nowadays, people are influenced by many things such as word of mouth, online communication, and social media. In business research, the study of how innovation develops (called the diffusion model) to understand these effects. We discuss how researchers model this across industries and brands. We will examine issues such as relationships, network effects, separations and technology generations in business life. We explore the impact of different countries, differences in growth and competition affecting growth, in the context of different businesses and brands. After reviewing the research, we think that in order to stay current, different models should be changed instead of looking at how people communicate. Our general recommendation: innovation diffusion refers to the way new products and their services enter the market, ambitious by social impact and all the ways in which people Consumers influence different business people. This includes things we may not be aware of that impact the business. Although much research has been done on the diffusion model, we believe there is much more to be discovered, especially to explain and understand the current market. These trends include globalization, the growth of online services, social disruption, and the complexity of everyday products and services.

Author

Rakesh Kumar, Minni Rani, Jyoti Gupta, A. K. Malik   ( Pages 21-34 )
Email:rakesh@sbsstc.ac.in
Affiliation:Department of Applied Sciences and Humanities, Shaheed Bhagat Singh State University, Ferozepur, Pu       DOI: https://doi.org/10.58517/IJSE.2023.2103

Keyword

Innovation Diffusion, Growth Model, Consumers.

References

1.     Bass, F. M. (1969). A new product growth model for consumer durables. Management Science, 15(1), 215−227.

2.     Bass, P., & Bass, F. M. (2001). Diffusion of technology generations: A model of adoption and repeat sales. Working paper: University of Texas at Dallas.

3.     Bass, P., & Bass, F. M. (2004). IT waves: two completed generational diffusion models. Working paper: University of Texas at Dallas.

4.     Bemmaor, A. C. (1994). Modeling the diffusion of new durable goods: Word-of-mouth effect versus consumer heterogeneity. In G. Laurent, G. L. Lilien, & B. Pras (Eds.), Research traditions in marketing (pp. 201−223). Boston: Kluwer.

5.     Berger, J., & Heath, C. (2007). When consumers diverge from others. Identity signaling and product domains. Journal of Consumer Research, 34(2), 121−134.

6.     Berger, J., & Heath, C. (2008). Who drives divergence? Identity signaling, out-group similarity, and the abandonment of cultural tastes. Journal of Personality and Social Psychology, 95(3), 593−607.

7.     Binken, J. L. G., & Stremersch, S. (2009). The effect of superstar software on hardware sales in system markets. Journal of Marketing, 73(2), 88−104.

8.     Boswijk, P. H., & Franses, P. H. (2005). On the econometrics of the Bass diffusion model. Journal of Business & Economic Statistics, 23(3), 255−288.

9.     Bourdieu, P. (1984). Distinction: A social critique of the judgment of taste. Cambridge, MA: Harvard University Press.

10.  Chandrasekaran, D., & Tellis, G. J. (2007). A critical review of marketing research on diffusion of new products. In N. K. Malhorta (Ed.), Review of marketing research (pp. 39−80).

11.  Chatterjee, R., Eliashberg, J., & Rao, V. R. (2000). Dynamic models incorporating competition. In V. Mahajan, E. Muller, & Y. Wind (Eds.), New-product diffusion models. New York: Kluwer Academic Publisher.

12.  Dekimpe, M. G., Parker, P. M., & Sarvary, M. (2000). Global diffusion of technological innovations: A coupled-hazard approach. Journal of Marketing Research, 37(1), 47−59.

13.  Dekimpe, M. G., Parker, P. M., & Sarvary, M. (2000). Globalization: Modeling technology adoption timing across countries. Technological Forecasting and Social Change, 63 (1), 25−42.

14.  Dekimpe, M. G., Parker, P. M., & Sarvary, M. (2000). Multimarket and global diffusion. In V. Mahajan, E. Muller, & Y. Wind (Eds.), New-product diffusion models. New York: Kluwer Academic Publisher.

15.  Desiraju, R., Nair, H., & Chintagunta, P. (2004). Diffusion of new pharmaceutical drugs in developing and developed nations. International Journal of Research in Marketing, 21(4), 341−357.

16.  Dorogovtsev, S. N., & Mendes, J. F. (2003). Evolution of networks. Oxford: Oxford University Press.

17.  Elberse, A., & Eliashberg, J. (2003). Demand and supply dynamics for sequentially   released products in international markets: The case of motion pictures. Marketing Science, 22(3), 329−354.

18.  Evans, D. S. (2009). The online advertising industry: Economics, evolution, and privacy. Journal of Economic Perspectives, 23(3), 37−60.

19.  Fibich, G., Gibori, R., & Muller, E. (2009). Analysis of cellular automata diffusion models in marketing. Working paper: Tel Aviv University.

20.  Ganesh, J., Kumar, V., & Subramaniam, V. (1997). Learning effect in multinational diffusion of consumer durables: An exploratory investigation. Journal of the Academy of Marketing Science, 25(3), 214−228.

21.  Garber, T., Goldenberg, J., Libai, B., & Muller, E. (2004). From density to destiny: Using spatial dimension of sales data for early prediction of new product success. Marketing Science, 23(3), 419−428.

22.  Gatignon, H. (2010). Commentary on Jacob Goldenberg, Barak Libai, and Eitan Muller's “The chilling effects of network externalities”. International Journal of Research in Marketing, 27(1), 16−17.

23.  Goldenberg, J., & Oreg, S. (2007). Laggards in disguise: Resistance to adopt and the Leap frogging effect. Technological Forecasting and Social Change, 74(8), 1272−1281.

24.  Goldenberg, J., Libai, B., & Muller, E. (2001). Using complex systems analysis to advance marketing theory development:Modeling heterogeneity effects on new product growth through stochastic cellular automata. Academy of Marketing Science Review, 9.

25.  Goldenberg, J., Libai, B., & Muller, E. (2001). Talk of the network: A complex system look at the underlying process of word of mouth. Marketing Letters, 12(3), 211−223.

26.  Goldenberg, J., Libai, B., & Muller, E. (2002). Riding the saddle: How cross-market communications can create a major slump in sales. Journal of Marketing, 66(2), 1−16.

27.  Goldenberg, J., Libai, B., Muller, E., & Moldovan, S. (2007). The NPV of bad news. International Journal of Research in Marketing, 24(3), 186−200.

28.  Goldenberg, J., Han, S., Lehmann, D. R., & Hong, J. W. (2009). The role of hubs in adoption processes. Journal of Marketing, 73(2), 1−13.

29.  Goldenberg, J., Libai, B., & Muller, E. (2010). The chilling effect of network externalities. International Journal of Research in Marketing, 27(1), 4–15.

30.  Golder, P. N., & Tellis, G. J. (1997). Will it ever fly? Modeling the takeoff of really new consumer durables. Marketing Science, 16(3), 256−270.

31.  Golder, P. N., & Tellis, G. J. (1998). Beyond diffusion: An affordability model of the growth of new consumer durables. Journal of Forecasting, 17(3–4), 259−280.

32.  Hauser, J., Tellis, G. J., & Griffin, A. (2006). Research on innovation: A review and agenda for Marketing Science. Marketing Science, 25(6), 687−717.

33.  Islam, T., & Meade, N. (1997). The diffusion of successive generations of a technology: A more general model. Technological Forecasting and Social Change, 56(1), 49−60.

34.  ITU (International Telecommunication Union). (2008). World Information Society 2007 report. Available as www.itu.int/wisr.

35.  Iyengar, R., Koenigsberg, O., & Muller, E. (2009). The effects of uncertainty on mobile phone package size and subscribers choice. Working paper: Columbia University.

36.  Jackson, M. O. (2008). Social and economic networks. Princeton: Princeton University Press.

37.  Jain, D., Mahajan, V., & Muller, E. (1991). Innovation diffusion in the presence of supply restrictions. Marketing Science, 10(1), 83−90.

38.  Jiang, Z., Bass, F. M., & Bass, P. I. (2006). The virtual Bass model and the left-hand truncation bias in diffusion of innovation studies. International Journal of Research in Marketing, 23(1), 93−106.

39.  Joshi, Y. V., Reibstein, D. J., & Zhang, J. Z. (2009). Optimal entry timing in markets with social influence. Management Science, 55(6), 926−939.

40.  Kossinets, G., & Watts, D. J. (2006). Empirical analysis of an evolving social network. Science, 311(5757), 88−90.

41.  Krishnan, T. V., & Suman, A. T. (2009). International diffusion of new products. In M. Kotabe, & K. Helsem (Eds.), The sage handbook of international marketing (pp. 325−345). London: Sage Publication.

42.  Krishnan, T. V., Bass, F. M., & Kumar, V. (2000). The impact of late entrant on the diffusion of a new product/service. Journal of Marketing Research, 37(2), 269−278.

43.  Kumar, V., Petersen, A. J., & Leone, R. P. (2007). How valuable is word of mouth? Harvard Business Review, 85(10), 139−146.

44.  Landsman, V., & Givon, M. (2010). The diffusion of a new service: Combining service consideration and brand choice. Quantitative Marketing and Economics, 8(1), 91–121.

45.  Lee, J. Y. C., Lee, J. -D., & Lee, C. -Y. (2006). Forecasting future demand fo

Download paper

AACS Journals
Visitor:-

Copyright © 2020 AACS All rights reserved